Soal dan Pembahasan Jarak Titik Ke Garis Pada Bangun Ruang


Soal 1


Diketahui limas beraturan T.ABCD, panjang rusuk AB = 3 cm dan TA = 6 cm. Tentukan jarak titik B ke rusuk TD.

Alternatif Penyelesaian

Gambar limas dari soal diatas sebagai berikut.

Diketahui

 cm

TD = TA = 6 cm

Ditanyakan jarak titik B ke rusuk TD.

Jawab

Proyeksi titik B di rusuk TD adalah titik P sehingga garis BP tegak lurus dengan garis TD, maka jarak titik B ke rusuk TD adalah panjang garis BP.

Perhatikan segitiga TOD, diperoleh :

Perhatikan segitiga TBD, dengan menggunakan kesamaan luas segitiga diperoleh

Jadi jarak titik B ke rusuk TD adalah  cm.


Soal 2


Diketahui limas segi enam beraturan. T.ABCDEF dengan panjang rusuk AB = 10 cm dan AT = 13 cm. Tentukan jarak titk B ke rusuk TE.

Alternatif Penyelesaian

Gambar limas dari soal diatas sebagai berikut.

Dari gambar soal dan gambar diketahui proyeksi titik B di garis TE adalah titik P, sehingga garis BP tegak lurus garis TE sehingga jarak titik B ke rusuk TD adalah panjang garis BP

BE = 2 . AB = 2 . 10 = 20 cm

ET = AT = 13 cm

EO = ½ BE = ½ 20 = 10 cm

Sehingga

Perhatikan segitiga TEB dan dengan menggunakan kesamaan luas segitiga diperoleh :

Jadi jarak titik B ke rusuk TD adalah  cm


Soal 3



Diketahui Kubus ABCD.EFGH dengan panjang AB = 10 cm. Tentukan :

a. Jarak titik F ke garis AC

b. Jarak titik H ke garis DF

Alternatif Penyelesaian

Gambar kubus dari soal diatas sebagai berikut.

a. Jarak titik F ke garis AC

Proyeksi titik F ke garis AC adalah titik O sehingga garis FO tegak lurus garis AC, maka jarak titik F ke garis AC adalah panjang garis FO.

Tarik garis BO yang berpotongan dengan garis AC di titik O, sehingga membentuk segitiga siku-siku FBO, siku-siku di titik B.

Perhatikan segitiga siku-siku FBO

BF = 10

Sehingga diperoleh panjang FO adalah

Jadi jarak titik F ke garis AC adalah  cm


b. Jarak titik H ke garis DF

Proyeksi titik H ke garis DF adalah titik P sehingga garis HP tegak lurus garis DF, maka jarak titik H ke garis DF adalah panjang garis HP.

Perhatikan segitiga DHF

DH = 6 dan 

Dengan menggunakan kesamaan luas segitiga diperoleh

Jadi jarak titik H ke garis DF adalah  cm





Soal 4


Diketahui kubus ABCD.EFGH dengan rusuk 8 cm. Titik M adalah titik tengah BC. Tentukan jarak M ke garis EG.

Alternatif Penyelesaian

Gambar kubus dari soal diatas sebagai berikut


Proyeksi titik M ke garis EG adalah titik P sehingga MP tegak lurus EG, maka jarak titik M ke garis EG adalah panjang garis MP.

Seperti pada pembahasan soal 3 pada soal dan pembahasan jarak titik ke titik pada bangun ruang bahwa segitiga BOC sebangun dengan segita MNC sehingga diperoleh

Perhatikan segitiga PNM

Jadi jarak titik M ke garis EG adalah  cm


Soal 5


Perhatikan limas segi empat beraturan berikut.

Titik P dan Q berturut-turut adalah titik tengah rusuk AB dan AD. Jika panjang AB = TA = 12 cm. Tentukan jarak antara titik T dan garis PQ.

Alternatif Penyelesaian

Proyeksi titik T ke garis PQ adalah titik S, sehingga garis TS tegaklurus dengan garis PQ, maka jarak titik T ke garis PQ adalah panjang garis TS.

Seperti pada pembahasan soal 3 pada soal dan pembahasan jarak titik ke titik pada bangun ruang, maka diperoleh

Untuk menghitung tinggi limas perhatikan segitiga AOT

Perhatikan segitiga TOS

Jadi jarak titik T ke garis PQ adalah  cm


Untuk mempelajari pembahasan soal jarak titik ke bidang silahkan klik DISINI

Demikian pembahasan soal jarak titik ke garis, semoga bermanfaat. Amin ya robbal alamin.

Post a Comment

Terimakasih untuk anda telah berkomentar di postingan ini

Previous Post Next Post