Menyelesaikan SPLTV dengan Metode Gabungan Substitusi dan Eliminasi

Menyelesaikan sistem persamaan linier tiga variabel (SPLTV) akan lebih efektif jika kita menggabung metode subtitusi dan eliminasi.

Untuk membahas langkah-langkah menyelesaikan sistem persamaan linier tiga variabel dengan metode gabungan ini, perhatikan contoh soal berikut.

Tentukan himpunan penyelesaian dari sistem persamaan linier tiga variabel berikut.

Pembahasan

Langkah 1 : Untuk memudahkan pembacaan kita buatkan label masing-masing persamaan linier diatas.

2x + y + z = 12 ......(1)

x + 2y - z = 3 .........(2)

3x - y + z = 11 .......(3)


Langkah 2 : Ubah persamaan (1) atau (2) atau (3) kedalam bentuk x = atau y = atau z =, pilih persamaan yang mudah untuk mengubah kebentuk tersebut. Misal pilih persamaan (2)

x + 2y - z = 3

x = -2y + z + 3 ........(4)




Langkah 3 : Subtitusi persamaan (4) ke persamaan (1)

2x + y + z = 12

2(-2y + z + 3) + y + z = 12

-4y + 2z + 6 + y + z = 12

-3y + 3z = 12 - 6

-3y + 3z = 6

-y + z = 2 ........(5)


Langkah 4 : Subtitusi persamaan (4) ke persamaan (3)

3x - y + z = 11

3(-2y + z + 3) - y + z = 11

-6y + 3z + 9 - y + z = 11

-7y +4z = 11 - 9

-7y + 4z = 2 ...........(6)


Langkah 5 : Eliminasi y dari persamaan (5) dan (6)




Langkah 6 : Substitusi z = 4 ke persamaan  (5)

-y + z = 2

-y + 4 = 2

-y = 2 - 4

-y = -2

y = 2


Langkah 7 : Substitusi z = 4 dan y = 2 ke persamaan  (4)

x = -2y + z + 3

x = -2.2 + 4 + 3

x = -4 + 4 + 3

x = 3


Langkah 8 : Menuliskan himpunan penyelesaian

Jadi himpunan penyelesaian dari sistem persamaan diatas adalah


Demikian pembahasan cara menyelesaikan sistem persamaan linier tiga variabel dengan menggunakan metode gabungan substitusi dan eliminasi. Selanjutnya akan dibahas cara menyelesaikan sistem persamaan linier tiga variabel dengan menggunakan metode diterminan dan dapat dipelajari di LINK INI.

Post a Comment

Terimakasih untuk anda telah berkomentar di postingan ini

Previous Post Next Post